Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820160260060737
Journal of Life Science
2016 Volume.26 No. 6 p.737 ~ p.748
Pharmaco-medical Application of Antimicrobial Peptides Derived from Insect
Lee Joon-Ha

Kim In-Woo
Kim Mi-Ae
Yun Eun-Young
Hwang In-Yeong
Abstract
By this time, insect antimicrobial peptides (AMPs) have been characterized more than 150 peptides since purification of cecropin in the hemolymph of pupae from Hyalophora cecropia in 1980. Therefore, it is considered that insects are good sources of AMP selection. Insect AMPs are small (low molecular weight) and cationic, and amphipathic with variable length, sequence, and structure. They perform a pivotal role on humoral immunity in the insect innate immune system against invading pathogens such as bacteria, fungi, parasites, and viruses. Most of the insect AMPs are induced rapidly in the fat bodies and other specific tissues of insects after septic injury or immune challenge. Then the AMPs subsequently released into the hemolymph to act against microorganisms. These peptides have a broad antimicrobial spectrum against various microbes including anticancer activities. Insect AMPs could be divided into four families based on their structures and sequences. That is the ¥á-helical peptides, cysteine-rich peptides, proline-rich peptides, and glycine-rich peptides/proteins. For instance, cecropins, insect defensins, proline-rich peptides, and attacins are common insect AMPs, but gloverins and moricins have been identified only in lepidopteran species. This review focuses on AMPs from insects and discusses current knowledge and recent progress with potential applications of insect AMPs.
KEYWORD
Antimicrobial activity, antimicrobial peptides, innate immunity, insect, pathogen
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)